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Introduction

In this lecture, we introduce the general multilevel model for
repeated measurements, and illustrate it with a simple example.
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The General Polynomial Growth Model – Level 1

Raudenbush and Bryk (2002, Chapter 6) describe a general
polynomial model for analyzing growth data. An individual i ’s
score at time t is a polynomial (of order P) function of time.
Here is the level-1 model.

Yti = π0i + π1iati + π2ia2
ti + . . .+ πPiaP

ti + eti (1)

Each person is observed on Ti occasions, and the number and
spacing of measurements may vary across persons. The
multivariate distribution of the eti may be modeled in various
ways.
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The General Polynomial Growth Model – Level 2

The growth parameters in Equation 1 are free to vary across
individuals. The P+1 parameters are modeled at level 2 as

πpi = βp0 +
Qp∑
q=1

βpqXqi + rpi (2)

where Xqi is either a measured characteristic of the individual
or a treatment, and rpi is a random effect with mean 0. The set
of P + 1 random effects is assumed to have a multivariate
normal distribution with covariance matrix T .
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A Linear Growth Model

When the number of observations per individual is small, we
find it both convenient and necessary to employ a linear model.
In that case, the level-1 equation 1 simplifies to

Yti = π0i + π1iati + eti (3)

and the level-2 equation 2 simplifies to

π0i = β00 +
Q0∑
q=1

β0qXqi + r0i

π1i = β10 +
Q1∑
q=1

β1qXqi + r1i (4)
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An Example — Alcohol Use among Teenagers

Curran, Stice, and Chassin (1997, Journal of Consulting and
Clinical Psychology, p. 130) studied longitudinal progression of
alcohol use in 82 adolescents. . .

Three waves of data were gathered, which included a
4-item questionnaire measuring extent of alcohol use
There were two level-2 predictors, COA (child of an
alcoholic) and PEER (a measure of peer group alcohol use)
As described in the text, a square root transformation was
applied to the data to generate the PEER and ALCUSE
data to enhance linearity.
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Preliminary Analysis

We would like to get a preliminary feel for the data with some
exploratory analyses. We begin by loading the data.

> a l c oho l 1 ← read.table ( ”a l c o h o l 1 p p . t x t ” , header=T, sep=” , ”)
> attach ( a l c o ho l 1 )

The data are in person-period format, as we can see by looking
at the first few lines:

> a l c oho l 1 [ 1 : 9 , ]

id age coa male age 14 a l c u s e peer cpeer ccoa
1 1 14 1 0 0 1 .732 1 .2649 0 .2469 0 .549
2 1 15 1 0 1 2 .000 1 .2649 0 .2469 0 .549
3 1 16 1 0 2 2 .000 1 .2649 0 .2469 0 .549
4 2 14 1 1 0 0 .000 0 .8944 −0.1236 0 .549
5 2 15 1 1 1 0 .000 0 .8944 −0.1236 0 .549
6 2 16 1 1 2 1 .000 0 .8944 −0.1236 0 .549
7 3 14 1 1 0 1 .000 0 .8944 −0.1236 0 .549
8 3 15 1 1 1 2 .000 0 .8944 −0.1236 0 .549
9 3 16 1 1 2 3 .317 0 .8944 −0.1236 0 .549
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Preliminary Analysis

A good place to start is by examining individual growth curves
for a random subset of 8 of the participants in the study.

> l ibrary ( l a t t i c e )

> xyplot ( a l c u s e∼age | id ,
+ data=a l coho l 1 [ a l c o ho l 1$ id %in%
+ c (4 , 14 , 23 , 32 , 41 , 56 , 65 , 82) , ] ,
+ panel=function (x , y ){
+ panel.xyplot (x , y )
+ panel.lmline (x , y )
+ } , yl im=c (−1 , 4 ) , as.table=T)
> update ( t r e l l i s . l a s t . ob j e c t ( ) ,
+ s t r i p = strip.custom ( s t r ip .names = TRUE,
+ s t r i p . l e v e l s = TRUE) )
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Trellis Plot
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Potential Predictors
> #set up a 2x2 panel

> par (mfrow=c ( 2 , 2 ) )
> a l c o h o l . c o a 0 ← a l c o ho l 1 [ a l c o ho l 1$coa==0, ]
> #fitting the linear model by id

> f . c o a 0 ← by( a l c oho l . c oa0 , a l c o h o l . c o a 0$ id ,
+ function (data ) f i tted (lm( a l c u s e∼age , data=data ) ) )
> #transforming f.coa from a list to a vector and

> #stripping of the names of the elements in the vector

> f . c o a 0 ← unlist ( f . c o a 0 )
> names( f . c o a 0 ) ← NULL
> #plotting the linear fit by id

> interaction.plot ( a l c o h o l . c o a 0$age , a l c o h o l . c o a 0$ id , f . c oa0 ,
+ xlab=”AGE” , ylab=”ALCUSE” , ylim=c (−1 , 4 ) , lwd=1)
> t i t l e ( ”COA=0”)
> a l c o h o l . c o a 1 ← a l c o ho l 1 [ a l c o ho l 1$coa==1, ]
> #fitting the linear model by id

> f . c o a 1 ← by( a l c oho l . c oa1 , a l c o h o l . c o a 1$ id ,
+ function (data ) f i tted (lm( a l c u s e∼age , data=data ) ) )
> #transforming f.coa1 from a list to a vector and

> #stripping of the names of the elements in the vector

> f . c o a 1 ← unlist ( f . c o a 1 )
> names( f . c o a 1 ) ← NULL
> #plotting the linear fit by id

> interaction.plot ( a l c o h o l . c o a 1$age , a l c o h o l . c o a 1$ id , f . c oa1 ,
+ xlab=”AGE” , ylab=”ALCUSE” , ylim=c (−1 , 4 ) , lwd=1)
> t i t l e ( ”COA=1”)
> c u t o f f←mean( a l c o ho l 1$peer )
> a l c o h o l . l o w p e e r ← a l c o ho l 1 [ a l c o ho l 1$peer ≤ cu to f f , ]
> #fitting the linear model by id

> f . l o w p e e r ← by( a l c oho l . l owpee r , a l c o h o l . l o w p e e r$ id ,
+ function (data ) f i tted (lm( a l c u s e∼age , data=data ) ) )
> #transforming f.lowpeer from a list to a vector and

> #stripping of the names of the elements in the vector

> f . l o w p e e r ← unlist ( f . l o w p e e r )
> names( f . l o w p e e r ) ← NULL
> #plotting the linear fit by id

> interaction.plot ( a l c o h o l . l o w p e e r$age , a l c o h o l . l o w p e e r$ id , f . l owpee r ,
+ xlab=”AGE” , ylab=”ALCUSE” , ylim=c (−1 , 4 ) , lwd=1)
> t i t l e ( ”Low Peer ”)
> #######Lower right panel, peer>1.01756.

> a l c o h o l . h i p e e r ← a l c o ho l 1 [ a l c o ho l 1$peer>cu to f f , ]
> #fitting the linear model by id

> f . h i p e e r ← by( a l c o h o l . h i p e e r , a l c o h o l . h i p e e r $ id ,
+ function (data ) f i tted (lm( a l c u s e∼age , data=data ) ) )
> #transforming f.hipeer from a list to a vector and

> #stripping of the names of the elements in the vector

> f . h i p e e r ← unlist ( f . h i p e e r )
> names( f . h i p e e r ) ← NULL
> #plotting the linear fit by id

> interaction.plot ( a l c o h o l . h i p e e r $age , a l c o h o l . h i p e e r $ id , f . h i p e e r ,
+ xlab=”AGE” , ylab=”ALCUSE” , ylim=c (−1 , 4 ) , lwd=1)
> t i t l e ( ”High Peer ”)

null dev i ce
1
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Introduction
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Evaluation of Potential Predictors

In the top part of the panel, we see that children of
alcoholics have generally higher intercepts than children of
nonalcoholics
In the bottom part of the panel, we see a tendency for
adolescents in the higher peer group have higher intercepts
but somewhat lower slopes
These trends suggest that both COA and PEER may be
important predictors of an individual’s developmental
trajectory
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Introduction

In this section, we present the R code for generating the models
discussed in Singer and Willett, Chapter 4.

The models are presented algebraically in their Table 4.2.

The output from an analysis with MLwiN (full IGLS) is
presented in their Table 4.1.

We shall present the R code and output corresponding to each
model.
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Model A – The Unconditional Means Model

This model, corresponding to one-way random effects ANOVA,
states in effect that all individual trajectories are flat, but that
intercepts vary in a normal distribution around a population
mean γ00. Be sure to load the lme4 library.

> l ibrary ( lme4 )
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Fitting Model A

> model.a ← lmer ( a l c u s e∼ 1 + 1 | id )
> summary( model .a )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ 1 + 1 | id
AIC BIC logL ik deviance REMLdev
679 690 −337 670 673

Random ef fects :
Groups Name Variance Std.Dev.
id ( I n t e r c e p t ) 0 .573 0 .757
Res idua l 0 .562 0 .749

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) 0 .9220 0 .0963 9 .57
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The Intraclass Correlation Revisited

The intraclass correlation is computed on page 96 of Willett
and Singer (2003). This is

ρ =
σ2

0

σ2
0 + σ2

ε

(5)

which we estimate in this case from our R output as
.57313/(.57313+.56175) = .505.

Multilevel The Multilevel Change Model



Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors
Model E
Model F
Model G

The Intraclass Correlation Revisited

The authors make the point that the composite model
demonstrates, i.e., that the “residuals” in the composite model
are the sum of two terms, one of which remains constant across
time. So the intraclass correlation also represents the
autocorrelation between measurements at two times the ith
individual. For example, consider the outcome scores for
individual i at times 1 and 2. These are, from the composite
model,

Yi1 = γ00 + ζ0i + εi1

Yi2 = γ00 + ζ0i + εi2 (6)

(C.P.) Using the heuristic rules for linear combinations, prove
that the correlation between Yi1 and Yi2 is the intraclass
correlation ρ.
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Model B — The Unconditional Growth Model

This model allows a non-flat trajectory by including TIME as
the predictor in the level-1 model.

It also allows the slopes and intercepts to correlate across
individuals.

The data file contains a variable called age14 that represents
time from the beginning of the study, which is a reasonable
metric to use in this case. However, I prefer the name TIME
and have effectively renamed the variable in the code below.
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Fitting Model B

> time ← age 14
> model.b ← lmer ( a l c u s e ∼ time +(time | id ) )
> summary( model.b )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ time + ( time | id )
AIC BIC logL ik deviance REMLdev
655 676 −322 637 643

Random ef fects :
Groups Name Variance Std.Dev. Corr
id ( I n t e r c e p t ) 0 .636 0 .797

time 0 .155 0 .394 −0.227
Res idua l 0 .337 0 .581

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) 0 .6513 0 .1057 6 .16
time 0 .2707 0 .0628 4 .31

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r )

time −0.441
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Interpreting Model B Output

Note that the residual variance dripped sharply from .562 to
.337. Since .337/.562 = .600, Singer and Willett conclude that
the 40% of the within-person variation alcohol use is
systematically associated with linear TIME.

Note also that the correlation between the two random effects is
negative, −.227, and weak.
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Pseudo-R2 Statistics

On pages 102–104, Singer and Willett discuss three “pseudo-R2”
statistics for quantifying performance of the various models.
The first statistic, R2

y,ŷ is the squared correlation, across all
participants, between predicted scores (using model estimates in
the composite model formula) and actual outcome scores. In
this case, R2

y,ŷ = .043, as computed below.

> cor ( a l cuse , .6513 +.2707 ∗time )∧2

[ 1 ] 0 .04339
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Pseudo-R2 Statistics

Residual variation—that portion of the outcome variation
unexplained by a model’s level-1 predictors—provides another
criterion for comparing two models. For models A and B, we
have

R2
ε =

σ̂2
εA
− σ̂2

εB

σ̂2
εA

(7)

In this case, we get (.562− .337)/.562 = .400.
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Pseudo-R2 Statistics

We can use an approach similar to that taken in the previous
slide to compute pseudo-R2 statistics for the proportional
reduction in level-2 variance attributable to the addition of
level-2 predictors. We have, for example

R2
C =

σ̂2
εB
− σ̂2

εC

σ̂2
εB

(8)

One well-known problem with these statistics is that unlike
more familiar R2 indices, they can be negative.
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Model C – COA as a Level-2 Predictor

In this model, we use COA at level 2 to predict slopes and
intercepts.
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Fitting Model C

> model .c ← lmer ( a l c u s e ∼ coa + time + coa : time + ( time | id ) )
> summary( model .c )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ coa + time + coa : time + ( time | id )
AIC BIC logL ik deviance REMLdev
648 676 −316 621 632

Random ef fects :
Groups Name Variance Std.Dev. Corr
id ( I n t e r c e p t ) 0 .507 0 .712

time 0 .159 0 .398 −0.229
Res idua l 0 .337 0 .581

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) 0 .3160 0 .1323 2 .39
coa 0 .7432 0 .1970 3 .77
time 0 .2930 0 .0853 3 .44
coa : time −0.0494 0 .1269 −0.39

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r ) coa time

coa −0.672
time −0.460 0 .309
coa : time 0 .309 −0.460 −0.672
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Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors
Model E
Model F
Model G

Model D – COA and PEER as Level-2 Predictors

> model.d ← lmer ( a l c u s e ∼ coa + time + coa : time+ peer + peer : time +(time | id ) )
> summary( model.d )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ coa + time + coa : time + peer + peer : time + ( time | id )
AIC BIC logL ik deviance REMLdev
626 661 −303 589 606

Random ef fects :
Groups Name Variance Std.Dev. Corr
id ( I n t e r c e p t ) 0 .261 0 .511

time 0 .151 0 .388 −0.064
Res idua l 0 .337 0 .581

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) −0.3165 0 .1508 −2.10
coa 0 .5792 0 .1655 3 .50
time 0 .4294 0 .1158 3 .71
peer 0 .6943 0 .1136 6 .11
coa : time −0.0140 0 .1271 −0.11
time : peer −0.1498 0 .0873 −1.72

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r ) coa time peer coa : tm

coa −0.371
time −0.436 0 .162
peer −0.686 −0.162 0 .299
coa : time 0 .162 −0.436 −0.371 0 .071
time : peer 0 .299 0 .071 −0.686 −0.436 −0.162

Multilevel The Multilevel Change Model
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The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors
Model E
Model F
Model G

Model E

> model .e ← lmer ( a l c u s e ∼ coa + peer + time + peer : time +(time | id ) )
> summary( model .e )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ coa + peer + time + peer : time + ( time | id )
AIC BIC logL ik deviance REMLdev
622 653 −302 589 604

Random ef fects :
Groups Name Variance Std.Dev. Corr
id ( I n t e r c e p t ) 0 .259 0 .509

time 0 .147 0 .383 −0.054
Res idua l 0 .337 0 .581

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) −0.3138 0 .1487 −2.11
coa 0 .5712 0 .1490 3 .83
peer 0 .6952 0 .1132 6 .14
time 0 .4247 0 .1069 3 .97
peer : time −0.1514 0 .0856 −1.77

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r ) coa peer time

coa −0.339
peer −0.708 −0.146
time −0.408 0 .000 0 .350
peer : time 0 .332 0 .000 −0.429 −0.814
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A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors
Model E
Model F
Model G

Model F

> mode l . f ← lmer ( a l c u s e ∼ coa + cpeer + time + cpeer : time + ( time | id ) )
> summary( mode l . f )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ coa + cpeer + time + cpeer : time + ( time | id )
AIC BIC logL ik deviance REMLdev
622 653 −302 589 604

Random ef fects :
Groups Name Variance Std.Dev. Corr
id ( I n t e r c e p t ) 0 .259 0 .509

time 0 .147 0 .383 −0.054
Res idua l 0 .337 0 .581

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) 0 .3939 0 .1054 3 .74
coa 0 .5712 0 .1490 3 .83
cpeer 0 .6952 0 .1132 6 .14
time 0 .2706 0 .0620 4 .36
cpeer : time −0.1514 0 .0856 −1.77

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r ) coa cpeer time

coa −0.638
cpeer 0 .094 −0.146
time −0.334 0 .000 0 .000
cpeer : time 0 .000 0 .000 −0.429 0 .001

Multilevel The Multilevel Change Model
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A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors
Model E
Model F
Model G

Model G

> model.g ← lmer ( a l c u s e ∼ ccoa+ cpeer + time + cpeer : time + ( time | id ) )
> summary( model .g )

Linear mixed model f i t by REML
Formula : a l c u s e ∼ ccoa + cpeer + time + cpeer : time + ( time | id )
AIC BIC logL ik deviance REMLdev
622 653 −302 589 604

Random ef fects :
Groups Name Variance Std.Dev. Corr
id ( I n t e r c e p t ) 0 .259 0 .509

time 0 .147 0 .383 −0.054
Res idua l 0 .337 0 .581

Number o f obs : 246 , groups : id , 82

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) 0 .6515 0 .0812 8 .02
ccoa 0 .5712 0 .1490 3 .83
cpeer 0 .6952 0 .1132 6 .14
time 0 .2706 0 .0620 4 .36
cpeer : time −0.1514 0 .0856 −1.77

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r ) ccoa cpeer time

ccoa 0 .000
cpeer 0 .001 −0.146
time −0.434 0 .000 0 .000
cpeer : time 0 .000 0 .000 −0.429 0 .001

Multilevel The Multilevel Change Model
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A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Plotting Model Trends
> pdf ( ”ModelFitPanel .pdf ”)
> par (mfrow = c ( 1 , 3 ) )
> #Plots

> #Model B

> f i x e f . b ← f ixe f ( model.b )
> f i t . b ← f i x e f . b [ [ 1 ] ] + time [ 1 : 3 ] ∗ f i x e f . b [ [ 2 ] ]
> plot ( a l c o ho l 1$age [ 1 : 3 ] , f i t . b , yl im=c (0 , 2 ) , type=”b” ,
+ ylab=”pred i c t ed a l c u s e ” , xlab=”age ”)
> t i t l e ( ”Model B \n Uncondit iona l growth model ”)
> #Model C

> f i x e f . c ← f ixe f ( model .c )
> f i t . c 0 ← f i x e f . c [ [ 1 ] ] + time [ 1 : 3 ] ∗ f i x e f . c [ [ 3 ] ]
> f i t . c 1 ← f i x e f . c [ [ 1 ] ] + f i x e f . c [ [ 2 ] ] +
+ time [ 1 : 3 ] ∗ f i x e f . c [ [ 3 ] ] +
+ time [ 1 : 3 ] ∗ f i x e f . c [ [ 4 ] ]
> plot ( a l c o ho l 1$age [ 1 : 3 ] , f i t . c 0 , yl im=c (0 , 2 ) , type=”b” ,
+ ylab=”pred i c t ed a l c u s e ” , xlab=”age ”)
> l ines ( a l c o ho l 1$age [ 1 : 3 ] , f i t . c 1 , type=”b” , pch=17)
> t i t l e ( ”Model C \n Uncontro l l ed e f f e c t s o f COA”)
> legend (14 , 2 , c ( ”COA=0” , ”COA=1”) )
> #Model E

> f i x e f . e ← f ixe f ( model .e )
> f i t . e c 0 p 0 ← f i x e f . e [ [ 1 ] ] + .655 ∗ f i x e f . e [ [ 3 ] ] +
+ time [ 1 : 3 ] ∗ f i x e f . e [ [ 4 ] ] +
+ .655 ∗time [ 1 : 3 ] ∗ f i x e f . e [ [ 5 ] ]
> f i t . e c 0 p 1 ← f i x e f . e [ [ 1 ] ] + 1 .381 ∗ f i x e f . e [ [ 3 ] ] +
+ time [ 1 : 3 ] ∗ f i x e f . e [ [ 4 ] ] +
+ 1 .381 ∗time [ 1 : 3 ] ∗ f i x e f . e [ [ 5 ] ]
> f i t . e c 1 p 0 ← f i x e f . e [ [ 1 ] ] + f i x e f . e [ [ 2 ] ] + .655 ∗ f i x e f . e [ [ 3 ] ] +
+ time [ 1 : 3 ] ∗ f i x e f . e [ [ 4 ] ] +
+ .655 ∗time [ 1 : 3 ] ∗ f i x e f . e [ [ 5 ] ]
> f i t . e c 1 p 1 ← f i x e f . e [ [ 1 ] ] + f i x e f . e [ [ 2 ] ] + 1 .381 ∗ f i x e f . e [ [ 3 ] ] +
+ time [ 1 : 3 ] ∗ f i x e f . e [ [ 4 ] ] +
+ 1 .381 ∗time [ 1 : 3 ] ∗ f i x e f . e [ [ 5 ] ]
> plot ( a l c o ho l 1$age [ 1 : 3 ] , f i t . e c 0 p 0 , ylim=c (0 , 2 ) , type=”b” ,
+ ylab=”pred i c t ed a l c u s e ” , xlab=”age ” , pch=2)
> l ines ( a l c o ho l 1$age [ 1 : 3 ] , f i t . e c 0 p 1 , type=”b” , pch=0)
> l ines ( a l c o ho l 1$age [ 1 : 3 ] , f i t . e c 1 p 0 , type=”b” , pch=17)
> l ines ( a l c o ho l 1$age [ 1 : 3 ] , f i t . e c 1 p 1 , type=”b” , pch=15)
> t i t l e ( ”Model E \n ∗ Fina l ∗ model ”)
> legend (14 , 2 , c ( ”COA=0, low peer ” , ”COA=0, high peer ” ,
+ ”COA=1, low peer ” , ”COA=1, high peer ” ) )
> dev.off ( )

Multilevel The Multilevel Change Model
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Plotting Model Trends
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Plotting Model Trends
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A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Displaying Residual Plots

> pdf ( ”Normal i tyPane l .pdf ”)
> par (mfrow = c ( 3 , 2 ) )
> resid ← residuals ( mode l . f )
> qqnorm( resid )
> #creating the standardized residual (std epsilon.hat)

> r e s i d . s t d ← resid/sd ( resid )
> plot ( id , r e s i d . s t d , yl im=c (−3 , 3 ) , ylab=”std e p s i l o n hat ”)
> abline (h=0)
> #Middle left panel

>
> #extracting the random effects of model f

> ran ← attr ( model . f , ” rane f ” ) [ 1 : 8 2 ]
> qqnorm( ran )
> #Middle right panel

>
> #standardizing the ksi0i.hat

> r an1 . s td ← ran/sd ( ran )
> plot ( id [ age ==14] , ran1 . s td , yl im=c (−3 , 3 ) , ylab=”std p s i 0 i hat ”)
> abline (h=0)
> #Lower left panel

> ran2 ← attr ( model . f , ” rane f ” ) [ 8 3 : 1 6 4 ]
> qqnorm( ran2 )
> #Lower right panel

>
> #standardizing the ksi1i.hat

> r an2 . s td ← ran2/sd ( ran2 )
> plot ( id [ age ==14] , ran2 . s td , yl im=c (−3 , 3 ) , ylab=”std p s i 1 i hat ”)
> abline (h=0)
> dev.off ( )

Multilevel The Multilevel Change Model
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A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Displaying Residual Plots
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Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Examining Residual Variance

> plot ( age , resid , yl im=c (−2 , 2 ) , ylab=” e p s i l o n . h a t ” ,
+ xlab=”AGE”)
> abline (h=0)
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Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Examining Residual Variance

> pdf ( ”Res idPane l .pd f ”)
> par (mfrow=c ( 2 , 2 ) )
> #Upper left panel

> plot ( coa [ age ==14] , ran , ylim=c (−1 , 1 ) ,
+ ylab=” k s i 0 i . h a t ” , xlab=”COA”)
> abline (h=0)
> #Upper right panel

> plot ( peer [ age ==14] , ran , yl im=c (−1 , 1 ) ,
+ xlim=c (0 , 3 ) , ylab=” k s i 0 i . h a t ” , xlab=”PEER”)
> abline (h=0)
> #Lower left panel

> plot ( coa [ age ==14] , ran2 , ylim=c (−1 , 1 ) ,
+ ylab=” k s i 1 i . h a t ” , xlab=”COA”)
> abline (h=0)
> #Lower right panel

> plot ( peer [ age ==14] , ran2 , yl im=c (−1 , 1 ) ,
+ xlim=c (0 , 3 ) , ylab=” k s i 1 i . h a t ” , xlab=”PEER”)
> abline (h=0)
> dev.off ( )

Multilevel The Multilevel Change Model
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